фото: General Dynamics (its aviation unit now part of Lockheed Martin) F-16C Block 50D

Robert Sullivan • 14-07-2017  

Описание: The General Dynamics F-16 "Fighting Falcon" is a single-engine supersonic multirole fighter aircraft originally developed by General Dynamics (its aviation unit now part of Lockheed Martin) for the United States Air Force (USAF). Designed as an air superiority day fighter, it evolved into a successful all-weather multirole aircraft. Over 4,600 aircraft have been built since production was approved in 1976. Although no longer being purchased by the U.S. Air Force, improved versions are being built for export customers. In 1993, General Dynamics sold its aircraft manufacturing business to the Lockheed Corporation, which in turn became part of Lockheed Martin after a 1995 merger with Martin Marietta. The "Fighting Falcon's" key features include a frameless bubble canopy for better visibility, side-mounted control stick to ease control while maneuvering, an ejection seat reclined 30 degrees from vertical to reduce the effect of g-forces on the pilot, and the first use of a relaxed static stability/fly-by-wire flight control system which helps to make it an agile aircraft. The F-16 has an internal M61 Vulcan cannon and 11 locations for mounting weapons and other mission equipment. The F-16's official name is "Fighting Falcon", but "Viper" is commonly used by its pilots and crews, due to a perceived resemblance to a viper snake as well as the Colonial Viper starfighter on Battlestar Galactica which aired at the time the F-16 entered service. In addition to active duty in the U.S. Air Force, Air Force Reserve Command, and Air National Guard units, the aircraft is also used by the USAF aerial demonstration team, the U.S. Air Force Thunderbirds, and as an adversary/aggressor aircraft by the United States Navy. The F-16 has also been procured to serve in the air forces of 25 other nations. As of 2015, it is the world's most numerous fixed-wing aircraft in military service. Lightweight Fighter program Experiences in the Vietnam War revealed the need for air superiority fighters and better air-to-air training for fighter pilots. Based on his experiences in the Korean War and as a fighter tactics instructor in the early 1960s, Colonel John Boyd with mathematician Thomas Christie developed the energy–maneuverability theory to model a fighter aircraft's performance in combat. Boyd's work called for a small, lightweight aircraft that could maneuver with the minimum possible energy loss and which also incorporated an increased thrust-to-weight ratio. In the late 1960s, Boyd gathered a group of like-minded innovators who became known as the Fighter Mafia, and in 1969, they secured Department of Defense funding for General Dynamics and Northrop to study design concepts based on the theory. Air Force F-X proponents remained hostile to the concept because they perceived it as a threat to the F-15 program. However, the Air Force's leadership understood that its budget would not allow it to purchase enough F-15 aircraft to satisfy all of its missions. The Advanced Day Fighter concept, renamed F-XX, gained civilian political support under the reform-minded Deputy Secretary of Defense David Packard, who favored the idea of competitive prototyping. As a result, in May 1971, the Air Force Prototype Study Group was established, with Boyd a key member, and two of its six proposals would be funded, one being the Lightweight Fighter (LWF). The Request for Proposals issued on 6 January 1972 called for a 20,000-pound (9,100 kg) class air-to-air day fighter with a good turn rate, acceleration, and range, and optimized for combat at speeds of Mach 0.6–1.6 and altitudes of 30,000–40,000 feet (9,100–12,000 m). This was the region where USAF studies predicted most future air combat would occur. The anticipated average flyaway cost of a production version was $3 million. This production plan, though, was only notional, as the USAF had no firm plans to procure the winner. Selection of finalists and fly-off Five companies responded, and in 1972, the Air Staff selected General Dynamics' Model 401 and Northrop's P-600 for the follow-on prototype development and testing phase. GD and Northrop were awarded contracts worth $37.9 million and $39.8 million to produce the YF-16 and YF-17, respectively, with first flights of both prototypes planned for early 1974. To overcome resistance in the Air Force hierarchy, the Fighter Mafia and other LWF proponents successfully advocated the idea of complementary fighters in a high-cost/low-cost force mix. The "high/low mix" would allow the USAF to be able to afford sufficient fighters for its overall fighter force structure requirements. The mix gained broad acceptance by the time of the prototypes' flyoff, defining the relationship of the LWF and the F-15. The YF-16 was developed by a team of General Dynamics engineers led by Robert H. Widmer. The first YF-16 was rolled out on 13 December 1973. Its 90-minute maiden flight was made at the Air Force Flight Test Center (AFFTC) at Edwards AFB, California, on 2 February 1974. Its actual first flight occurred accidentally during a high-speed taxi test on 20 January 1974. While gathering speed, a roll-control oscillation caused a fin of the port-side wingtip-mounted missile and then the starboard stabilator to scrape the ground, and the aircraft then began to veer off the runway. The test pilot, Phil Oestricher, decided to lift off to avoid a potential crash, safely landing six minutes later. The slight damage was quickly repaired and the official first flight occurred on time. The YF-16's first supersonic flight was accomplished on 5 February 1974, and the second YF-16 prototype first flew on 9 May 1974. This was followed by the first flights of Northrop's YF-17 prototypes on 9 June and 21 August 1974, respectively. During the flyoff, the YF-16s completed 330 sorties for a total of 417 flight hours; the YF-17s flew 288 sorties, covering 345 hours. Air Combat Fighter competition Increased interest turned the LWF into a serious acquisition program. North Atlantic Treaty Organization (NATO) allies Belgium, Denmark, the Netherlands, and Norway were seeking to replace their F-104G "Starfighter" fighter-bombers. In early 1974, they reached an agreement with the U.S. that if the USAF ordered the LWF winner, they would consider ordering it as well. The USAF also needed to replace its F-105 "Thunderchief" and F-4 "Phantom II" fighter-bombers. The U.S. Congress sought greater commonality in fighter procurements by the Air Force and Navy, and in August 1974 redirected Navy funds to a new Navy Air Combat Fighter (NACF) program that would be a navalized fighter-bomber variant of the LWF. The four NATO allies had formed the "Multinational Fighter Program Group" (MFPG) and pressed for a U.S. decision by December 1974; thus, the USAF accelerated testing. To reflect this serious intent to procure a new fighter-bomber, the LWF program was rolled into a new Air Combat Fighter (ACF) competition in an announcement by U.S. Secretary of Defense James R. Schlesinger in April 1974. The ACF would not be a pure fighter, but multi-role, and Schlesinger made it clear that any ACF order would be in addition to the F-15, which extinguished opposition to the LWF. ACF also raised the stakes for GD and Northrop because it brought in competitors intent on securing what was touted at the time as "the arms deal of the century". These were Dassault-Breguet's proposed "Mirage F1M-53", the Anglo-French SEPECAT "Jaguar", and the proposed Saab 37E "Eurofighter". Northrop offered the P-530 Cobra, which was similar to the YF-17. The Jaguar and Cobra were dropped by the MFPG early on, leaving two European and the two U.S. candidates. On 11 September 1974, the U.S. Air Force confirmed plans to order the winning ACF design to equip five tactical fighter wings. Though computer modeling predicted a close contest, the YF-16 proved significantly quicker going from one maneuver to the next, and was the unanimous choice of those pilots that flew both aircraft. On 13 January 1975, Secretary of the Air Force John L. McLucas announced the YF-16 as the winner of the ACF competition. The chief reasons given by the Secretary were the YF-16's lower operating costs, greater range, and maneuver performance that was "significantly better" than that of the YF-17, especially at supersonic speeds. Another advantage of the YF-16 – unlike the YF-17 – was its use of the Pratt & Whitney F100 turbofan engine, the same powerplant used by the F-15; such commonality would lower the cost of engines for both programs. Secretary McLucas announced that the USAF planned to order at least 650, possibly up to 1,400 production F-16s. In the Navy Air Combat Fighter (NACF) competition, on 2 May 1975 the Navy selected the YF-17 as the basis for what would become the McDonnell Douglas F/A-18 "Hornet". Commencement of production The U.S. Air Force initially ordered 15 "Full-Scale Development" (FSD) aircraft (11 single-seat and four two-seat models) for its flight test program, but was reduced to eight (six F-16A single-seaters and two F-16B two-seaters). The YF-16 design was altered for the production F-16. The fuselage was lengthened by 10.6 in (0.269 m), a larger nose radome was fitted for the AN/APG-66 radar, wing area was increased from 280 sq ft (26 m2) to 300 sq ft (28 m2), the tailfin height was decreased, the ventral fins were enlarged, two more stores stations were added, and a single door replaced the original nosewheel double doors. The F-16's weight was increased by 25% over the YF-16 by these modifications. The FSD F-16s were manufactured by General Dynamics in Fort Worth, Texas at United States Air Force Plant 4 in late 1975; the first F-16A rolled out on 20 October 1976 and first flew on 8 December. The initial two-seat model achieved its first flight on 8 August 1977. The initial production-standard F-16A flew for the first time on 7 August 1978 and its delivery was accepted by the USAF on 6 January 1979. The F-16 was given its formal nickname of "Fighting Falcon" on 21 July 1980, entering USAF operational service with the 34th Tactical Fighter Squadron, 388th Tactical Fighter Wing at Hill AFB in Utah on 1 October 1980. On 7 June 1975, the four European partners, now known as the European Participation Group, signed up for 348 aircraft at the Paris Air Show. This was split among the European Participation Air Forces (EPAF) as 116 for Belgium, 58 for Denmark, 102 for the Netherlands, and 72 for Norway. Two European production lines, one in the Netherlands at Air Combat Fighter (ACF) competition and the other at SABCA's Gosselies plant in Belgium, would produce 184 and 164 units respectively. Norway's Kongsberg Vaapenfabrikk and Denmark's Terma A/S also manufactured parts and subassemblies for EPAF aircraft. European co-production was officially launched on 1 July 1977 at the Fokker factory. Beginning in November 1977, Fokker-produced components were sent to Fort Worth for fuselage assembly, then shipped back to Europe for final assembly of EPAF aircraft at the Belgian plant on 15 February 1978; deliveries to the Belgian Air Force began in January 1979. The first Royal Netherlands Air Force aircraft was delivered in June 1979. In 1980, the first aircraft were delivered to the Royal Norwegian Air Force by SABCA and to the Royal Danish Air Force by Fokker. During the late 1980s and 1990s, Turkish Aerospace Industries (TAI) produced 232 Block 30/40/50 F-16s on a production line in Ankara under license for the Turkish Air Force. TAI also produced 46 Block 40s for Egypt in the mid-1990s and 30 Block 50 from 2010. Korean Aerospace Industries opened a production line for the KF-16 program, producing 140 Block 52s from the mid-1990s to mid-2000s (decade). If India had selected the F-16IN for its Medium Multi-Role Combat Aircraft procurement, a sixth F-16 production line would have been built in India. In May 2013, Lockheed Martin stated there were currently enough orders to keep producing the F-16 until 2017. Improvements and upgrades One change made during production was augmented pitch control to avoid deep stall conditions at high angles of attack. The stall issue had been raised during development, but had originally been discounted. Model tests of the YF-16 conducted by the Langley Research Center revealed a potential problem, but no other laboratory was able to duplicate it. YF-16 flight tests were not sufficient to expose the issue; later flight testing on the FSD aircraft demonstrated there was a real concern. In response, the area of the horizontal stabilizer were increased by 25% on the Block 15 aircraft in 1981 and later retrofitted to earlier aircraft. In addition, a manual override switch to disable the horizontal stabilizer flight limiter was prominently placed on the control console, allowing the pilot to regain control of the horizontal stabilizers (which the flight limiters otherwise lock in place) and recover. Besides reducing the risk of deep stalls, the larger horizontal tail also improved stability and permitted faster takeoff rotation. In the 1980s, the Multinational Staged Improvement Program (MSIP) was conducted to evolve the F-16's capabilities, mitigate risks during technology development, and ensure the aircraft's worth. The program upgraded the F-16 in three stages. The MSIP process permitted the quick introduction of new capabilities, at lower costs and with reduced risks compared to traditional independent upgrade programs. In 2012, the USAF had allocated $2.8 billion to upgrade 350 F-16s while waiting for the F-35 to enter service. One key upgrade has been an auto-GCAS (Ground collision avoidance system) to reduce instances of controlled flight into terrain. Onboard power and cooling capacities limit the scope of upgrades, which often involve the addition of more power-hungry avionics. Lockheed won many contracts to upgrade foreign operators' F-16s. BAE Systems also offers various F-16 upgrades, receiving orders from South Korea, Oman, Turkey, and the US Air National Guard; BAE lost the South Korean contract due to a price breach in November 2014. In 2012, the USAF assigned the total upgrade contract to Lockheed Martin. Upgrades include Raytheon's Center Display Unit, which replaces several analog flight instruments with a single digital display. In 2013, sequestration budget cuts cast doubt on the USAF's ability to complete the Combat Avionics Programmed Extension Suite (CAPES), a part of secondary programs such as Taiwan's F-16 upgrade. ACC's General Mike Hostage stated that if he only had money for SLEP (service life extension program) or CAPES, he would fund SLEP to keep the aircraft flying. Lockheed Martin responded to talk of CAPES cancellation with a fixed-price upgrade package for foreign users. CAPES was not included in the Pentagon's 2015 budget request. The USAF said that the upgrade package will still be offered to the Republic of China Air Force, and Lockheed said that some common elements with the F-35 will keep the radar's unit costs down. In 2014, the USAF issued a RFI to SLEP 300 F-16 C/Ds. Production relocation To make more room for assembly of its newer F-35 "Lightning II" fighter aircraft, Lockheed Martin moved the F-16 production from Fort Worth, Texas to its plant in Greenville, South Carolina. Lockheed delivered the last F-16 from Fort Worth to the Iraqi Air Force on 14 November 2017, ending forty years of F-16 production there. The company is hoping to finish the Greenville move and restart production in 2019, though engineering and modernization work will remain in Fort Worth. A gap in orders made it possible to stop production during the move; after completing orders for the last Iraqi purchase, the company was negotiating an F-16 sale to Bahrain that would be produced in Greenville. This contract was signed in June 2018. Design Overview The F-16 is a single-engine, highly maneuverable, supersonic, multi-role tactical fighter aircraft. It is much smaller and lighter than its predecessors, but uses advanced aerodynamics and avionics, including the first use of a relaxed static stability/fly-by-wire (RSS/FBW) flight control system, to achieve enhanced maneuver performance. Highly agile, the F-16 was the first fighter aircraft purpose-built to pull 9-g maneuvers and can reach a maximum speed of over Mach 2. Innovations include a frameless bubble canopy for better visibility, a side-mounted control stick, and a reclined seat to reduce g-force effects on the pilot. It is armed with an internal M61 Vulcan cannon in the left wing root and has multiple locations for mounting various missiles, bombs and pods. It has a thrust-to-weight ratio greater than one, providing power to climb and vertical acceleration. The F-16 was designed to be relatively inexpensive to build and simpler to maintain than earlier-generation fighters. The airframe is built with about 80% aviation-grade aluminum alloys, 8% steel, 3% composites, and 1.5% titanium. The leading-edge flaps, stabilators, and ventral fins make use of bonded aluminum honeycomb structures and graphite epoxy lamination coatings. The number of lubrication points, fuel line connections, and replaceable modules is significantly lower than preceding fighters; 80% of the access panels can be accessed without stands. The air intake was placed so it was rearward of the nose but forward enough to minimize air flow losses and reduce aerodynamic drag. Although the LWF program called for a structural life of 4,000 flight hours, capable of achieving 7.33 g with 80% internal fuel; GD's engineers decided to design the F-16's airframe life for 8,000 hours and for 9-g maneuvers on full internal fuel. This proved advantageous when the aircraft's mission changed from solely air-to-air combat to multi-role operations. Changes in operational use and additional systems have increased weight, necessitating multiple structural strengthening programs. General configuration The F-16 has a cropped-delta wing incorporating wing-fuselage blending and forebody vortex-control strakes; a fixed-geometry, underslung air intake (with splitter plate) to the single turbofan jet engine; a conventional tri-plane empennage arrangement with all-moving horizontal "stabilator" tailplanes; a pair of ventral fins beneath the fuselage aft of the wing's trailing edge; and a tricycle landing gear configuration with the aft-retracting, steerable nose gear deploying a short distance behind the inlet lip. There is a boom-style aerial refueling receptacle located behind the single-piece "bubble" canopy of the cockpit. Split-flap speedbrakes are located at the aft end of the wing-body fairing, and a tailhook is mounted underneath the fuselage. A fairing beneath the rudder often houses ECM equipment or a drag chute. Later F-16 models feature a long dorsal fairing along the fuselage's "spine", housing additional equipment or fuel. Aerodynamic studies in the 1960s demonstrated that the "vortex lift" phenomenon could be harnessed by highly swept wing configurations to reach higher angles of attack, using leading edge vortex flow off a slender lifting surface. As the F-16 was being optimized for high combat agility, GD's designers chose a slender cropped-delta wing with a leading edge sweep of 40° and a straight trailing edge. To improve maneuverability, a variable-camber wing with a NACA 64A-204 airfoil was selected; the camber is adjusted by leading-edge and trailing edge flaperons linked to a digital flight control system (FCS) regulating the flight envelope. The F-16 has a moderate wing loading, reduced by fuselage lift. The vortex lift effect is increased by leading edge extensions, known as strakes. Strakes act as additional short-span, triangular wings running from the wing root (the juncture with the fuselage) to a point further forward on the fuselage. Blended into the fuselage and along the wing root, the strake generates a high-speed vortex that remains attached to the top of the wing as the angle of attack increases, generating additional lift and allowing greater angles of attack without stalling. Strakes allow a smaller, lower-aspect-ratio wing, which increases roll rates and directional stability while decreasing weight. Deeper wingroots also increase structural strength and internal fuel volume. Armament Early F-16s could be armed with up to six AIM-9 "Sidewinder" heat-seeking short-range air-to-air missiles (AAM) by employing rail launchers on each wingtip, as well as radar guided AIM-7 "Sparrow" medium-range AAMs in a weapons mix. More recent versions support the AIM-120 AMRAAM. The aircraft can carry various other AAMs, a wide variety of air-to-ground missiles, rockets or bombs; electronic countermeasures (ECM), navigation, targeting or weapons pods; and fuel tanks on 9 hardpoints – six under the wings, two on wingtips, and one under the fuselage. Two other locations under the fuselage are available for sensor or radar pods. The F-16 carries a 20 mm (0.787 in) M61A1 Vulcan cannon for close range aerial combat and strafing. The 20mm cannon is mounted inside the fuselage to the left of the cockpit. Negative stability and fly-by-wire The F-16 is the first production fighter aircraft intentionally designed to be slightly aerodynamically unstable, also known as "relaxed static stability" (RSS), to improve maneuverability. Most aircraft are designed with positive static stability, which induces aircraft to return to straight and level flight attitude if the pilot releases the controls; this reduces maneuverability as the inherent stability has to be overcome. Aircraft with negative stability are designed to deviate from controlled flight and thus be more maneuverable. At supersonic speeds the F-16 gains stability (eventually positive) due to aerodynamic changes. To counter the tendency to depart from controlled flight—and avoid the need for constant trim inputs by the pilot, the F-16 has a quadruplex (four-channel) fly-by-wire (FBW) flight control system (FLCS). The flight control computer (FLCC) accepts pilot input from the stick and rudder controls, and manipulates the control surfaces in such a way as to produce the desired result without inducing control loss. The FLCC conducts thousands of measurements per second on the aircraft's flight attitude to automatically counter deviations from the pilot-set flight path; leading to a common aphorism among pilots: "You don't fly an F-16; it flies you." The FLCC further incorporates limiters governing movement in the three main axes based on attitude, airspeed and angle of attack (AOA); these prevent control surfaces from inducing instability such as slips or skids, or a high AOA inducing a stall. The limiters also prevent maneuvers that would exert more than a 9 g load. Flight testing has revealed that "assaulting" multiple limiters at high AOA and low speed can result in an AOA far exceeding the 25° limit, colloquially referred to as "departing"; this causes a deep stall; a near-freefall at 50° to 60° AOA, either upright or inverted. While at a very high AOA, the aircraft's attitude is stable but control surfaces are ineffective; the pitch limiter locks the stabilators at an extreme pitch-up or pitch-down attempting to recover, this can be overridden so the pilot can "rock" the nose via pitch control to recover. Unlike the YF-17, which had hydromechanical controls serving as a backup to the FBW, General Dynamics took the innovative step of eliminating mechanical linkages between the control stick and rudder pedals, and the flight control surfaces. The F-16 is entirely reliant on its electrical systems to relay flight commands, instead of traditional mechanically-linked controls, leading to the early moniker of "the electric jet". The quadruplex design permits "graceful degradation" in flight control response in that the loss of one channel renders the FLCS a "triplex" system. The FLCC began as an analog system on the A/B variants, but has been supplanted by a digital computer system beginning with the F-16C/D Block 40. The F-16's controls suffered from a sensitivity to static electricity or electrostatic discharge (ESD). Up to 70–80% of the C/D models' electronics were vulnerable to ESD. Cockpit and ergonomics A key feature of the F-16's cockpit is the exceptional field of view. The single-piece, bird-proof polycarbonate bubble canopy provides 360° all-round visibility, with a 40° look-down angle over the side of the aircraft, and 15° down over the nose (compared to the common 12–13° of preceding aircraft); the pilot's seat is elevated for this purpose. Furthermore, the F-16's canopy lacks the forward bow frame found on many fighters, which is an obstruction to a pilot's forward vision. The F-16's ACES II zero/zero ejection seat is reclined at an unusual tilt-back angle of 30°; most fighters have a tilted seat at 13–15°. The tilted seat can accommodate taller pilots and increases G-force tolerance; however it has been associated with reports of neck ache, possibly caused by incorrect head-rest usage. Subsequent U.S. fighters have adopted more modest tilt-back angles of 20°. Due to the seat angle and the canopy's thickness, the ejection seat lacks canopy-breakers for emergency egress; instead the entire canopy is jettisoned prior to the seat's rocket firing. The pilot flies primarily by means of an armrest-mounted side-stick controller (instead of a traditional center-mounted stick) and an engine throttle; conventional rudder pedals are also employed. To enhance the pilot's degree of control of the aircraft during high-g combat maneuvers, various switches and function controls were moved to centralized "hands on throttle-and-stick (HOTAS)" controls upon both the controllers and the throttle. Hand pressure on the side-stick controller is transmitted by electrical signals via the FBW system to adjust various flight control surfaces to maneuver the F-16. Originally the side-stick controller was non-moving, but this proved uncomfortable and difficult for pilots to adjust to, sometimes resulting in a tendency to "over-rotate" during takeoffs, so the control stick was given a small amount of "play". Since introduction on the F-16, HOTAS controls have become a standard feature on modern fighters. The F-16 has a head-up display (HUD), which projects visual flight and combat information in front of the pilot without obstructing the view; being able to keep their head "out of the cockpit" improves a pilot's situation awareness. Further flight and systems information are displayed on multi-function displays (MFD). The left-hand MFD is the primary flight display (PFD), typically showing radar and moving-maps; the right-hand MFD is the system display (SD), presenting information about the engine, landing gear, slat and flap settings, and fuel and weapons status. Initially, the F-16A/B had monochrome cathode ray tube (CRT) displays; replaced by color liquid-crystal displays on the Block 50/52. The MLU introduced compatibility with night-vision goggles (NVG). The Boeing Joint Helmet Mounted Cueing System (JHMCS) is available from Block 40 onwards, for targeting based on where the pilot's head faces, unrestricted by the HUD, using high-off-boresight missiles like the AIM-9X. Fire-control radar The F-16A/B was originally equipped with the Westinghouse AN/APG-66 fire-control radar. Its slotted planar array antenna was designed to be compact to fit into the F-16's relatively small nose. In uplook mode, the APG-66 uses a low pulse-repetition frequency (PRF) for medium- and high-altitude target detection in a low-clutter environment, and in look-down/shoot-down employs a medium PRF for heavy clutter environments. It has four operating frequencies within the X band, and provides four air-to-air and seven air-to-ground operating modes for combat, even at night or in bad weather. The Block 15's APG-66(V)2 model added a more powerful signal processing, higher output power, improved reliability and increased range in cluttered or jamming environments. The Mid-Life Update (MLU) program introduced a new model, APG-66(V)2A, which features higher speed and more memory. The AN/APG-68, an evolution of the APG-66, was introduced with the F-16C/D Block 25. The APG-68 has greater range and resolution, as well as 25 operating modes, including ground-mapping, Doppler beam-sharpening, ground moving target indication, sea target, and track while scan (TWS) for up to 10 targets. The Block 40/42's APG-68(V)1 model added full compatibility with Lockheed Martin Low-Altitude Navigation and Targeting Infra-Red for Night (LANTIRN) pods, and a high-PRF pulse-Doppler track mode to provide continuous-wave radar (CW) target illumination for semi-active radar-homing (SARH) missiles like the AIM-7 Sparrow. Block 50/52 F-16s initially used the more reliable APG-68(V)5 which has a programmable signal processor employing Very-High-Speed Integrated Circuit (VHSIC) technology. The Advanced Block 50/52 (or 50+/52+) are equipped with the APG-68(V)9 radar, with a 30% greater air-to-air detection range and a synthetic aperture radar (SAR) mode for high-resolution mapping and target detection-recognition. In August 2004, Northrop Grumman were contracted to upgrade the APG-68 radars of Block 40/42/50/52 aircraft to the (V)10 standard, providing all-weather autonomous detection and targeting for Global Positioning System (GPS)-aided precision weapons, SAR mapping and terrain-following radar (TF) modes, as well as interleaving of all modes. The F-16E/F is outfitted with Northrop Grumman's AN/APG-80 active electronically scanned array (AESA) radar. Northrop Grumman developed the latest AESA radar upgrade for the F-16 (selected for USAF and Republic of China Air Force F-16 upgrades), named the Scalable Agile Beam Radar (SABR). In July 2007, Raytheon announced that it was developing a Next Generation Radar (RANGR) based on its earlier AN/APG-79 AESA radar as a competitor to Northrop Grumman's AN/APG-68 and AN/APG-80 for the F-16. Propulsion The initial powerplant selected for the single-engined F-16 was the Pratt & Whitney F100-PW-200 afterburning turbofan, a modified version of the F-15's F100-PW-100, rated at 23,830 lbf (106.0 kN) thrust. During testing, the engine was found to be prone to compressor stalls and "rollbacks", wherein the engine's thrust would spontaneously reduce to idle. Until resolved, the Air Force ordered F-16s to be operated within "dead-stick landing" distance of its bases. It was the standard F-16 engine through the Block 25, except for the newly-built Block 15s with the Operational Capability Upgrade (OCU). The OCU introduced the 23,770 lbf (105.7 kN) F100-PW-220, later installed on Block 32 and 42 aircraft: the main advance being a Digital Electronic Engine Control (DEEC) unit, which improved reliability and reduced stall occurrence. Beginning production in 1988, the "-220" also supplanted the F-15's "-100", for commonality. Many of the "-220" engines on Block 25 and later aircraft were upgraded from 1997 onwards to the "-220E" standard, which enhanced reliability and maintainability; unscheduled engine removals were reduced by 35%. The F100-PW-220/220E was the result of the USAF's Alternate Fighter Engine (AFE) program (colloquially known as "the Great Engine War"), which also saw the entry of General Electric as an F-16 engine provider. Its F110-GE-100 turbofan was limited by the original inlet to thrust of 25,735 lbf (114.5 kN), the Modular Common Inlet Duct allowed the F110 to achieve its maximum thrust of 28,984 lbf (128.9 kN). (To distinguish between aircraft equipped with these two engines and inlets, from the Block 30 series on, blocks ending in "0" (e.g., Block 30) are powered by GE, and blocks ending in "2" (e.g., Block 32) are fitted with Pratt & Whitney engines.) The Increased Performance Engine (IPE) program led to the 29,588 lbf (131.6 kN) F110-GE-129 on the Block 50 and 29,160 lbf (129.4 kN) F100-PW-229 on the Block 52. F-16s began flying with these IPE engines in the early 1990s. Altogether, of the 1,446 F-16C/Ds ordered by the USAF, 556 were fitted with F100-series engines and 890 with F110s. The United Arab Emirates’ Block 60 is powered by the General Electric F110-GE-132 turbofan with a maximum thrust of 32,500 lbf (144.6 kN), the highest thrust engine developed for the F-16.

Tags:




Поиск и фотоизображения предоставлены компанией Flickr с помощью сервиса Flickr API согласно Правилам пользования сайтом Flick.com и его сервисами. Графические изображения являются публичными, размещёнными их авторами в свободный доступ (Public) и физически расположены на серверах Flickr. Все права на фотографии принадлежат их авторам согласно пользовательскому соглашению сервиса Flickr.com и охраняются законами, регулирующими авторские права.